Observing Geostationary Satellites

In fact most geostationary satellites are really geosynchronous. Having mean motions between 0.9 to 1.1 revolutions per day they are allowed to drift across a box before corrections are made by on board thrusters. The size of this box is dictated by mission requirements. For example the box for a TV broadcast satellite is determined by the beamwidth of the reception dishes used.

The drift from the ideal position arises due to anomalies in the Earth's gravitational field, at this altitude atmospheric drag is not a consideration. The gravitational influence of the Moon provides an out-of-plane force too, which gradually increases the orbital inclination towards that of the Moon about the Earth (which itself varies between 18 and 29 degrees). The satellite now tends to describe a figure-of-eight ground track; ground controllers aim to restrict this to the box mentioned earlier given that enough orbit-keeping fuel remains. This wandering has been allowed to grow unchecked in the case of a few communications satellites in order to provide better coverage of the polar regions which is otherwise poor (from the poles a geostationary satellite would almost graze the horizon). Net connectivity to US research stations in the Antarctic was achieved in this manner.

Unlike objects in low Earth orbit, geostationary satellites are visible throughout every night of the year, only entering the Earth's shadow for up to 70 minutes per day, around a couple of weeks either side of each equinox. During the same period the satellite tends to brighten over several days, twice a year, when the satellites orientation favors the 'beaming' of the Sun in the direction of the observer.